Premium
Heliospheric shocks and catastrophe theory
Author(s) -
Burlaga L. F.
Publication year - 1990
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/gl017i010p01633
Subject(s) - maxima and minima , heliosphere , coalescence (physics) , maxima , polynomial , shock (circulatory) , physics , catastrophe theory , mathematics , mathematical analysis , quantum mechanics , plasma , solar wind , geology , astronomy , medicine , art , geotechnical engineering , performance art , art history
Various configurations of forward and reverse shocks that occur in the outer heliosphere can be classified using catastrophe theory. The existence of a forward shock is associated with a local maximum of a polynomial, and the existence of a reverse shock is associated with a local minimum of a polynomial. A configuration with N forward shocks and N reverse shocks corresponds to a polynomial with N maxima and N minima. The formation of forward and reverse shocks corresponds to the creation of maxima and minima of a polynomial, which is described by the separatrices of the catastrophes A K . The coalescence of two forward (reverse) shocks corresponds to the situation when two maxima (minima) of a polynomial have equal values, and the interaction of a forward shock with a reverse shock corresponds to a polynomial with a local maximum equal to a local minimum; these situations are described by the Maxwell sets of the appropriate catastrophes.