z-logo
Premium
The adjustment of mantle plumes to changes in plate motion
Author(s) -
Griffiths Ross W.,
Richards Mark A.
Publication year - 1989
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/gl016i005p00437
Subject(s) - geology , plume , lithosphere , buoyancy , hotspot (geology) , mantle plume , volcano , plate tectonics , geophysics , mantle (geology) , advection , instability , deflection (physics) , seismology , geodesy , mechanics , tectonics , meteorology , physics , classical mechanics , thermodynamics
The relative motion of hotspots and lithospheric plates implies a velocity shear in the underlying mantle, causing horizontal advection of mantle plumes as they rise toward the lithosphere. Consequent tilting of plumes parallel to the direction of plate motion indicates that plumes must undergo a period of readjustment after the velocity vector for plate motion is altered. Thus the shape of bends in the surface tracks of hotspots, resulting from changes in plate motion, will reflect the plume adjustment. Laboratory experiments, as well as computations using a simple theory developed in Richards & Griffiths [1988] for the dynamics of continuous plume conduits, demonstrate that the bend in the surface track has a radius of curvature approximately equal to the maximum horizontal deflection of the conduit. Thus the sharpness of the bend at an age of 43Ma in the Hawaiian‐Emperor volcanic chain implies that the deflection of the underlying plume in that case was small (<200 km). This small deflection is expected for plumes carrying large buoyancy fluxes, and it indicates that tilting of the conduit is unlikely to be sufficient to cause diapiric instability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here