Premium
Detection of nonthermal continuum radiation in Saturn's magnetosphere
Author(s) -
Kurth W. S.,
Scarf F. L.,
Sullivan J. D.,
Gurnett D. A.
Publication year - 1982
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/gl009i008p00889
Subject(s) - jovian , physics , magnetosphere , astronomy , magnetosphere of saturn , saturn , jupiter (rocket family) , astrobiology , radiation , astrophysics , planet , plasma , space exploration , quantum mechanics , magnetopause
A detailed analysis of high resolution wideband data from the Voyager 1 and 2 plasma wave receivers has revealed the presence of heretofore undiscovered nonthermal continuum radiation trapped within the Saturnian magnetosphere. The discovery of Saturnian trapped continuum radiation fills a disturbing void in the Saturnian radio spectrum. On the basis of observations at both the Earth and Jupiter it was expected that continuum radiation should be a pervasive signature of planetary magnetospheres in general. Special processing of the Voyager 1 plasma wave data at Saturn has now confirmed the existence of weak emissions that have a spectrum characteristic of trapped continuum radiation. Similar radiation was also detected by Voyager 2; however, in this case it is not certain that Saturn was the only source. Considerable evidence exists which suggests that Saturn may have been immersed in the Jovian tail during the Voyager 2 encounter, so that Jupiter may provide an additional source of the continuum radiation detected by Voyager 2.