z-logo
Premium
Bowen Ratio estimates of evapotranspiration for Tamarix ramosissima stands on the Virgin River in southern Nevada
Author(s) -
Devitt D. A.,
Sala A.,
Smith S. D.,
Cleverly J.,
Shaulis L. K.,
Hammett R.
Publication year - 1998
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/98wr01551
Subject(s) - tamarix , evapotranspiration , canopy , hydrology (agriculture) , environmental science , bowen ratio , riparian zone , atmospheric sciences , water table , advection , transpiration , energy balance , geology , geography , groundwater , ecology , physics , geotechnical engineering , photosynthesis , archaeology , botany , habitat , biology , thermodynamics
A Bowen ratio energy balance was conducted over a Tamarix ramosissima (saltcedar) stand growing in a riparian corridor along the Virgin River in southern Nevada. Measurements in two separate years were compared and contrasted on the basis of changes in growing conditions. In 1994, a drought year, record high temperatures, dry winds, and a falling water table caused partial wilt of outer smaller twigs in the canopy of many trees in the stand around the Bowen tower. Subsequently, evapotranspiration (ET) estimates declined dramatically over a 60‐day period (11 mm d −1 to <1 mm d −1 ). In 1995, the Virgin River at the Bowen tower area changed its course, hydrologically isolating the Tamarix stand in the vicinity of the tower. In 1996, a 25% canopy loss was visually estimated for the Tamarix growing in the area of the tower. Higher soil temperatures relative to air temperatures were recorded in 1996 in response to this loss in canopy. With a more open canopy, thermally induced turbulence was observed in 1996. On day 160 of 1996, a 28°C rise over a 9‐hour period was correlated with increased wind speeds of greater than 4 m s −1 . Subsequently, higher ET estimates were made in 1996 compared to 1994 (145 cm versus 75 cm). However, the energy balance was dominated by advection in 1996, with latent energy flux exceeding net radiation 65% of the measurement days compared to only 11% in 1994. We believe this advection was on a scale of the floodplain (hundreds of meters) as opposed to regional advection, since the majority of wind (90%) was in a N–S direction along the course of the river, and that a more open canopy allowed the horizontal transfer of energy into the Tamarix stand at the Bowen tower. Our results suggest that Tamarix has the potential to be both a low water user and a high water user, depending on moisture availability, canopy development, and atmospheric demand, and that advection can dominate energy balances and ET in aridland riparian zones such as the Virgin River.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here