Characteristics of small tropical cumulus clouds and their impact on the environment
Author(s) -
Benner Timothy C.,
Curry Judith A.
Publication year - 1998
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/98jd02579
Subject(s) - environmental science , cirrus , cloud fraction , effective radius , meteorology , remote sensing , cloud height , satellite , cloud top , radiative transfer , mesoscale meteorology , atmospheric sciences , cloud cover , cloud computing , geology , computer science , physics , quantum mechanics , astronomy , galaxy , operating system
This study uses a number of data sets (Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator data, space shuttle photography, Radiation Measurement System data, aircraft data, and shipboard soundings) to investigate the characteristics of small tropical cumulus clouds and their impact on their environment. The goal is to uncover useful information with application to radiative transfer simulation and satellite remote sensing. In fields of small cumulus clouds, size distributions are found to decrease in number with increasing diameter according to a double power law relation, often with a clear break diameter. Fractal dimensions corresponding to the horizontal area and perimeter of the clouds are greater for the larger clouds than for the smaller clouds, with the same break diameter as the size distributions, meaning that the larger clouds have more ragged perimeters. These two results suggest a characteristic horizontal length scale dividing larger and smaller boundary layer cumuli. Spatial distributions show a clear tendency toward clustering. Smaller cumuli appear to grow upward more quickly with increasing horizontal size than do larger cumuli. Albedo is found to increase with greater cloud fraction and higher solar zenith angle. Even sparse fields of small cumulus cause significant shortwave forcing at the ocean surface. Simulation suggests that small cumulus may introduce significant errors into sea surface temperature retrievals and that such clouds can be difficult to remove with operational cloud‐filtering schemes. Clouds smaller than about 1 km in diameter are not seen to precipitate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom