z-logo
open-access-imgOpen Access
Simulation of off‐equatorial ring current ion spectra measured by Polar for a moderate storm at solar minimum
Author(s) -
Jordanova V. K.,
Farrugia C. J.,
Quinn J. M.,
Torbert R. B.,
Borovsky J. E.,
Sheldon R. B.,
Peterson W. K.
Publication year - 1999
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/98ja02658
Subject(s) - ring current , solar wind , physics , geomagnetic storm , substorm , interplanetary magnetic field , magnetosphere , ionosphere , polar , spectral line , computational physics , geophysics , electric field , atmospheric sciences , magnetic field , astronomy , quantum mechanics
We use our kinetic drift‐loss model to study ring current dynamics during moderate geomagnetic activity at the minimum phase of the current solar cycle, on March 20–22, 1996. Interplanetary conditions monitored by Wind during this period show fluctuations about zero in the (GSM) B z component, which are due to Alfvén waves in a stream‐stream interaction region. The corresponding Dst index shows general activity punctuated by 2 moderate storms (min Dst ≈−50 nT and ≈−70 nT, respectively) of ∼15 hours duration each. We calculate the off‐equatorial ring current proton spectra in the energy range 100 eV to 300 keV and compare them with measurements provided by the HYDRA, TIMAS, and CEPPAD instruments on the Polar spacecraft at MLT≈2 and MLT≈14. We find reasonable overall agreement. An eastward offset of 3 hours in the Kp ‐dependent Volland‐Stern convection electric field with γ=2 is necessary in order to match modeled with observed dips in the energy spectra. Collisional losses have larger effect on the postnoon spectra and reduce significantly the low‐energy proton distribution at low L shells and at higher magnetic latitudes. These losses reach maximum values for slowly drifting (∼2–10 keV) particles. Our study suggests that a more realistic magnetospheric electric field and additional diffusion processes should be considered to reduce the overestimated width and depth of the dip in the modeled dayside spectra.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here