
Ionospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms
Author(s) -
Ho C. M.,
Mannucci A. J.,
Sparks L.,
Pi X.,
Lindqwister U. J.,
Wilson B. D.,
Iijima B. A.,
Reyes M. J.
Publication year - 1998
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/98ja01237
Subject(s) - tec , ionosphere , total electron content , geomagnetic storm , storm , noon , atmospheric sciences , northern hemisphere , latitude , geology , environmental science , geodesy , earth's magnetic field , geophysics , physics , oceanography , quantum mechanics , magnetic field
The global evolution of two major ionospheric storms, occurring on November 4, 1993, and November 26, 1994, respectively, is studied using measurements of total electron content (TEC) obtained from a worldwide network of ground‐based GPS receivers. The time‐dependent features of ionospheric storms are identified using TEC difference maps based on the percent change of TEC during storm time relative to quiet time. The onset of each ionospheric storm is indicated by the appearance of auroral/subauroral TEC enhancements which occur within 1 hour of the beginning of the geomagnetic storm main phase. Significant TEC enhancements (> 100%) are observed in the winter northern hemisphere. The rate at which TEC enhancements appear is found to correlate with gradients in the Dst index. The large scale ionospheric structures identified during the storms are (1) nightside auroral/subauroral enhancements which surround the auroral oval, (2) dayside (around noon) high‐latitude and middle‐latitude enhancements associated with traveling ionospheric disturbances, and (3) conjugate latitudinal enhancements. For the November 1993 storm, a short positive phase (about 15 hours) is followed by a long negative phase (∼60 hours). In the November 1994 storm, we have identified the clear signature of a traveling ionospheric disturbance (TID) which propagated at a speed of ∼460 m/s from ∼60° N to ∼40° N. The motion of this disturbance appears to conserve angular momentum.