z-logo
Premium
A meteor scatter prediction model and its application to adaptive beam steering
Author(s) -
Akram Ammad,
Can Paul S.
Publication year - 1997
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/97rs00109
Subject(s) - meteor shower , meteor (satellite) , sky , meteoroid , environmental science , offset (computer science) , beam steering , computer science , meteorology , remote sensing , optics , beam (structure) , geology , physics , astronomy , programming language
A computer model to predict the underdense meteor arrival rate over a forward meteor scatter communications link is presented. The model incorporates important effects such as major shower streams, a nonuniform radiant distribution, and antenna polarization coupling. A particularly useful aspect of the model is its capacity to predict the passage of sporadic and shower hotspot regions across the sky and thereby provide directional information to drive an adaptive beam steering system. Directional data from a phased array reception system in the United Kingdom has been used to determine the diurnal arrival distribution of sporadic meteors. This diurnal variation is broadly reproduced by the model and suggests that just two daily changes in the direction of a high‐gain beam would offer considerable advantage over a fixed beam system. This paper shows that further improvements in system performance can be achieved with accurate predictions of the time of appearance and location of shower streams. A comparative study between monthly predictions and experimental data from a high‐latitude link in Greenland over a year shows reasonable agreement but highlights the need for higher‐resolution radiant data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here