z-logo
open-access-imgOpen Access
Spatial distribution of dimethylsulfide and dimethylsulfoniopropionate in the Australasian sector of the Southern Ocean
Author(s) -
Curran Mark A. J.,
Jones Graham B.,
Burton Harry
Publication year - 1998
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/97jd03453
Subject(s) - dimethylsulfoniopropionate , oceanography , upwelling , seawater , sea ice , dimethyl sulfide , environmental science , nitrate , mixed layer , geology , chemistry , nutrient , sulfur , phytoplankton , biology , ecology , organic chemistry
During 1991–1995, seven voyages were made to the Southern Ocean to determine the distribution of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in seawater and air in the Australasian sector (60°E to 165°E). Measurements of DMSP in sea ice were also made. During the summer months the Subtropical Convergence (STC) and Antarctic Convergence (AC) were identified as important source regions of these sulfur compounds. In the Seasonal Ice zone (SIZ) there were marked longitudinal differences possibly reflecting higher productivity and the extent of the sea ice in this region. Levels of DMSP in sea ice cores were consistent with this regional difference. High and variable concentrations of DMSP also occurred in the Subantarctic Zone (SAZ) (45°‐53°S), decreasing to lower levels around 64°S, close to the Antarctic Divergence (AD). Upwelling of deep water around the AD is suggested to have been responsible for the low biological activity and low DMSP levels. While there was generally a good relationship between DMSPp and biomass, there was a marked difference in the DMSPp:chlorophyll a ratio between regions, and between years. DMSP was generally negatively correlated with dissolved nitrate, however, it was unclear if the level of nitrate directly affected DMSP production. DMS w levels were highest in the mixed layer, with lower, yet detectable, levels in the deeper ocean. DMS w was occasionally elevated in Antarctic Bottom Water (AABW), suggesting that ice shelf water transports this substance to deeper waters. DMSP was not found above detection limits below the mixed layer, but some evidence was found that DMSP may be transported to deeper waters, close to the Antarctic continent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here