Premium
The state of stress near the Mendocino Triple Junction from inversion of earthquake focal mechanisms
Author(s) -
Schwartz Susan Y.,
Hubert Aurélia
Publication year - 1997
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/97gl01060
Subject(s) - geology , triple junction , subduction , seismology , stress field , focal mechanism , induced seismicity , geophysics , tectonics , physics , finite element method , thermodynamics
Focal mechanisms of 70 earthquakes occurring in the region of the Mendocino triple junction between 1977 and 1995 are inverted to obtain the regional stress orientations and relative magnitudes in this technically complex area. A diverse set of earthquake geometries is consistent with a single stress field characterized by north‐northwest, horizontal, maximum principal compressive stress. Although this stress direction is almost perpendicular to convergence between the North American and Gorda plates, it is consistent with the stress direction inferred within the Gorda plate northwest of the triple junction. A maximum compressive stress direction nearly parallel to strike of the Cascadia subduction zone implies very low resolved shear stress across this plate boundary. Evidence for failure along the southernmost section of the Cascadia subduction zone comes from the occurrence of the recent 1992 (Ms=7.1) Cape Mendocino underthrusting earthquake as well as from measurements of Holocene surface uplift consistent with the 1992 coseismic uplift pattern. Rupture of the Cascadia subduction zone under this stress regime requires that the southernmost region of the Gorda‐North American Plate boundary is weak.