Premium
The 1990–1995 El Niño‐Southern Oscillation Event: Longest on Record
Author(s) -
Trenberth Kevin E.,
Hoar Timothy J.
Publication year - 1996
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/95gl03602
Subject(s) - pacific decadal oscillation , climatology , el niño southern oscillation , sea surface temperature , environmental science , climate model , multivariate enso index , southern oscillation , climate change , geology , oceanography
The tendency for more frequent El Niño events and fewer La Niña events since the late 1970's has been linked to decadal changes in climate throughout the Pacific basin. Aspects of the most recent warming in the tropical Pacific from 1990 to 1995, which are connected to but not synonymous with El Niño, are unprecedented in the climate record of the past 113 years. There is a distinction between El Niño (EN), the Southern Oscillation (SO) in the atmosphere, and ENSO, where the two are strongly linked, that emerges clearly on decadal time scales. In the traditional El Niño region, sea surface temperature anomalies (SSTAs) have waxed and waned, while SSTAs in the central equatorial Pacific, which are better linked to the SO, remained positive from 1990 to June 1995. We carry out several statistical tests to assess the likelihood that the recent behavior of the SO is part of a natural decadal‐timescale variation. One test fits an autoregressive‐moving average (ARMA) model to a measure of the SO given by the first hundred years of the pressures at Darwin, Australia, beginning in 1882. Both the recent trend for more ENSO events since 1976 and the prolonged 1990–1995 ENSO event are unexpected given the previous record, with a probability of occurrence about once in 2,000 years. This opens up the possibility that the ENSO changes may be partly caused by the observed increases in greenhouse gases.