Premium
Reconstruction of solar irradiance since 1610: Implications for climate change
Author(s) -
Lean Judith,
Beer Juerg,
Bradley Raymond
Publication year - 1995
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/95gl03093
Subject(s) - solar irradiance , irradiance , northern hemisphere , environmental science , atmospheric sciences , solar variation , southern hemisphere , climate change , climatology , solar minimum , forcing (mathematics) , solar maximum , solar cycle , geology , physics , oceanography , optics , quantum mechanics , magnetic field , solar wind
Solar total and ultraviolet (UV) irradiances are reconstructed annually from 1610 to the present. This epoch includes the Maunder Minimum of anomalously low solar activity (circa 1645–1715) and the subsequent increase to the high levels of the present Modern Maximum. In this reconstruction, the Schwabe (11‐year) irradiance cycle and a longer term variability component are determined separately, based on contemporary solar and stellar monitoring. The correlation of reconstructed solar irradiance and Northern Hemisphere (NH) surface temperature is 0.86 in the pre‐industrial period from 1610 to 1800, implying a predominant solar influence. Extending this correlation to the present suggests that solar forcing may have contributed about half of the observed 0.55°C surface warming since 1860 and one third of the warming since 1970.