z-logo
Premium
Attenuation and scintillation of radio waves in the Earth's atmosphere from radio occultation experiments on satellite‐to‐satellite links
Author(s) -
Yakovlev O. I.,
Matyugov S. S.,
Vilkov I. A.
Publication year - 1995
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/94rs01920
Subject(s) - radio occultation , scintillation , amplitude , atmosphere (unit) , radio wave , physics , satellite , scintillometer , occultation , wavelength , geostationary orbit , altitude (triangle) , atmospheric refraction , remote sensing , optics , ionosphere , geology , meteorology , geophysics , astrophysics , astronomy , geometry , mathematics , quantum mechanics , detector
A theoretical analysis of refractive loss of radio waves by the Earth's atmosphere in radio occultation measurements along the satellite‐to‐satellite line for various altitude profiles of the refractive index is given. Experimental results for refractive loss on the orbital spacecraft ‐ geostationary satellite link are presented. Theoretical calculations are compared with experimental data, and a conclusion is drawn that the signal amplitude during radio occultation is strongly dependent on the layered structure of the refractive index profile. Amplitude scintillations of centimeter (λ 1 = 2 cm ) and decimeter (λ 2 = 32 cm ) radio waves used in radio occultation experiments are described. Dependences of the rms value of the amplitude scintillations versus the minimum altitude of the ray line for the two above wavelength bands are presented. The frequency spectra of the log‐amplitude scintillations are analyzed together with the dependence of the rms amplitude on the wavelength. Experimental data are compared to the theory of scintillations in a turbulent atmosphere, and the altitude model of the structure constant of refractivity fluctuations is determined.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here