Premium
On the generation of instabilities in variable density flow
Author(s) -
Schincariol Robert A.,
Schwartz Franklin W.,
Mendoza Carl A.
Publication year - 1994
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/93wr02951
Subject(s) - instability , perturbation (astronomy) , mechanics , plume , wavelength , physics , péclet number , dispersion relation , wavenumber , classical mechanics , statistical physics , meteorology , optics , quantum mechanics
Interfacial or fingering instabilities have been studied recently in relation to contamination problems where a more dense plume is enclosed by and is moving along in a body of less dense fluid. Instabilities can play an important role in the mixing or dispersion process. Through the use of a variable density flow and transport code, we were able to study how the style of interfacial perturbation controls the pattern of instability development. Whether initial perturbations grow or decay depends mainly on the wavelength of the perturbing function. A critical perturbation wavelength must be exceeded for a perturbation to grow; otherwise the perturbation simply decays. Our work confirms earlier analyses that suggest that all stratified systems are inherently unstable, given some spectrum of the perturbing waves that exceed the critical wavelength. By implication, Rayleigh number stability criteria are inappropriate for evaluating the dense plume problem. Our study also demonstrates how numerical errors in a mass transport code can serve as a perturbing function and lead to the development of instabilities. However, these instabilities are not physically realistic and are essentially uncontrollable because their character depends on the extent to which numerical errors develop, as evidenced by the grid Peclet and Courant numbers.