z-logo
Premium
Hydraulic conductivity estimation for soils with heterogeneous pore structure
Author(s) -
Durner Wolfgang
Publication year - 1994
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/93wr02676
Subject(s) - hydraulic conductivity , soil water , water retention , conductivity , soil science , function (biology) , richards equation , pore water pressure , geotechnical engineering , mathematics , environmental science , geology , chemistry , evolutionary biology , biology
The hydraulic conductivity function, which is required to solve the Richards equation, is difficult to measure. Therefore prediction methods are frequently used where the shape of the conductivity function is estimated from the more easily measured water retention characteristic. Errors in conductivity estimations can arise either from an invalidity of the prediction model for a given soil, or from an incorrect description of the retention data. This second error source is particularly important for soils with heterogeneous pore systems that cannot be adequately described by the usually used retention functions. To describe the retention characteristics of such soils, a flexible θ(ψ) function was formed by superimposing unimodal retention curves of the van Genuchten (1980) type. By combining this retention model with the conductivity prediction model of Mualem (1976), conductivity estimations for soils with heterogeneous pore systems are obtained. Estimated conductivities by this model and the classical van Genuchten‐Mualem method can differ by orders of magnitude. Thus reported disagreements between measured and estimated conductivities may in some cases be due to an inadequate description of the retention data rather than due to a failure of the prediction model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here