z-logo
Premium
Field experiments in a fractured clay till: 2. Solute and colloid transport
Author(s) -
McKay Larry D.,
Gillham Robert W.,
Cherry John A.
Publication year - 1993
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/93wr02069
Subject(s) - colloid , matrix (chemical analysis) , hydraulic conductivity , geology , tracer , diffusion , porous medium , fracture (geology) , pore water pressure , mineralogy , porosity , geotechnical engineering , materials science , chemistry , soil science , thermodynamics , soil water , composite material , physics , nuclear physics
A field tracer experiment was conducted in a lateral flow field in the weathered and highly fractured upper 6 m of a 40‐m‐thick clay‐rich till plain in southwestern Ontario. In the upper 3 m where fractures are closely spaced (<0.13 m) the advancing front ( C / C 0 = 0.01) of the nonreactive solute tracers, bromide and 18 O, migrated at rates of 0.01 to 0.07 m/d, over distances of 4 and 6 m and under a lateral hydraulic gradient of 0.24. In this same zone, two strains of colloid‐sized bacteriophage tracers migrated at rates of 2 to >5 m/d. Simulations with a discrete fracture/porous matrix flow and transport model, which used the cubic law for flow in fractures, showed that diffusion of the solutes, but not the much larger colloids, into the matrix pore water between fractures is sufficient to cause the observed difference in solute and colloid transport rates. Transport‐derived and hydraulic conductivity‐derived fracture aperture values were similar, within a factor of 3 and falling mainly within a range of 5–40 μm. In the upper 3 m the solute tracers were evenly distributed between pore water in the fractures and the matrix, and as a result, solute transport can be closely approximated with an equivalent porous medium (EPM) approach. Below this depth, fractures are more widely spaced (0.13 to >1 m) with concentration peaks tending to occur near visible fractures, and solute transport cannot be adequately described with an EPM approach.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here