z-logo
Premium
Plasma waves observed at low altitudes in the tenuous Venus nightside ionosphere
Author(s) -
Strangeway R. J.,
Russell C. T.,
Ho C. M.,
Brace L. H.
Publication year - 1993
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/93gl02629
Subject(s) - ionosphere , physics , venus , geophysics , whistler , atmosphere of venus , magnetic field , astrobiology , quantum mechanics
The Pioneer Venus Orbiter Electric Field Detector (OEFD) measured many plasma wave bursts throughout the low altitude ionosphere during the final entry phase of the spacecraft. Apart from 100 Hz bursts observed at very low altitudes (∼130 km), the bursts fall into two classes. The first of these is a wideband signal that is observed in regions of low magnetic field, but average densities, in comparison to the prevailing ionospheric condition. This wideband signal is not observed in the 30 kHz channel of the OEFD, but is restricted to the 5.4 kHz channel and lower. Since these bursts are observed with roughly constant burst rate above 160 km altitude, we attribute them to ion acoustic mode waves generated by precipitating solar wind electrons. The second type of signal is restricted to 100 Hz only, and is observed in regions of low electron beta, consistent with whistler‐mode waves. These waves could be generated by lightning in the Venus atmosphere if the vertical component of the magnetic field >3.6 nT. Unfortunately, the spacecraft spin axis is mainly horizontal, and only that component of magnetic field can be measured. Alternatively, the 100 Hz bursts could be generated locally through gradient drift instabilities, provided the ambient magnetic field is horizontal. Because the ionosphere is very different during the entry phase, compared to the ionosphere as observed early in the Pioneer Venus mission, any conclusions regarding the source of the plasma waves detected during entry phase cannot be applied directly to the earlier observations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here