Premium
Does choice of multicriteria method matter? An experiment in water resources planning
Author(s) -
Hobbs Benjamin F.,
Chankong Vira,
Hamadeh Wael,
Stakhiv Eugene Z.
Publication year - 1992
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/92wr00712
Subject(s) - electre , computer science , matching (statistics) , analytic hierarchy process , value (mathematics) , variety (cybernetics) , management science , plan (archaeology) , operations research , selection (genetic algorithm) , risk analysis (engineering) , multiple criteria decision analysis , artificial intelligence , machine learning , engineering , mathematics , business , statistics , archaeology , history
Many multiple criteria decision making methods have been proposed and applied to water planning. Their purpose is to provide information on tradeoffs among objectives and to help users articulate value judgments in a systematic, coherent, and documentable manner. The wide variety of available techniques confuses potential users, causing inappropriate matching of methods with problems. Experiments in which water planners apply more than one multicriteria procedure to realistic problems can help dispel this confusion by testing method appropriateness, ease of use, and validity. We summarize one such experiment where U.S. Army Corps of Engineers personnel used several methods to screen urban water supply plans. The methods evaluated include goal programming, ELECTRE I, additive value functions, multiplicative utility functions, and three techniques for choosing weights (direct rating, indifference tradeoff, and the analytical hierarchy process). Among the conclusions we reach are the following. First, experienced planners generally prefer simpler, more transparent methods. Additive value functions are favored. Yet none of the methods are endorsed by a majority of the participants; many preferred to use no formal method at all. Second, there is strong evidence that rating, the most commonly applied weight selection method, is likely to lead to weights that fail to represent the trade‐offs that users are willing to make among criteria. Finally, we show that decisions can be as or more sensitive to the method used as to which person applies it. Therefore, if who chooses is important, then so too is how a choice is made.