Premium
Rock magnetism and the interpretation of anisotropy of magnetic susceptibility
Author(s) -
Rochette P.,
Jackson M.,
Aubourg C.
Publication year - 1992
Publication title -
reviews of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.087
H-Index - 156
eISSN - 1944-9208
pISSN - 8755-1209
DOI - 10.1029/92rg00733
Subject(s) - rock magnetism , remanence , demagnetizing field , magnetic susceptibility , magnetism , paramagnetism , anisotropy , magnetic anisotropy , geology , condensed matter physics , magnetic domain , magnetite , ferromagnetism , magnetization , single domain , magnetic field , geophysics , physics , paleontology , optics , quantum mechanics
The conventional rules, derived from empirical and theoretical considerations, for the interpretation of anisotropy of magnetic susceptibility (AMS) in terms of microstructure and deformation are subject to numerous exceptions as a result of particular rock magnetic effects. Unusual relationships between structural and magnetic axes (so‐called inverse or intermediate magnetic fabrics) can occur because of the presence of certain magnetic minerals, either single domain magnetite or various paramagnetic minerals. When more than one mineral is responsible for magnetic susceptibility, various problems appear, in particular the impossibility of using anisotropy to make quantitative inferences on the intensity of the preferred orientation and consequently on strain. In ferromagnetic grains, AMS may also be influenced by the magnetic memory of the grains (including natural remanence). The effect of alternating field or thermal demagnetization on AMS is briefly discussed. Various rock magnetic techniques, specific to AMS interpretation, have to be developed for a better assessment of the geological significance of AMS data. These techniques mainly rely on measurements of susceptibility versus magnetic field and temperature, together with anisotropy of remanence.