Premium
Hysteresis and state‐dependent anisotropy in modeling unsaturated hillslope hydrologic processes
Author(s) -
McCord James T.,
Stephens Daniel B.,
Wilson John L.
Publication year - 1991
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/91wr00880
Subject(s) - anisotropy , hysteresis , porous medium , hydraulic conductivity , flow (mathematics) , mechanics , soil science , vadose zone , geotechnical engineering , geology , state variable , statistical physics , materials science , physics , soil water , porosity , thermodynamics , condensed matter physics , optics
This paper describes a series of soil water tracer experiments and approaches taken to numerically model the flow and transport behavior observed in the field experiments. These experimental and numerical results strongly suggest that current widely held views and commonly applied modeling approaches are flawed in many cases for unsaturated flow, and provide strong supporting evidence for a variable, state‐dependent anisotropy in the hydraulic conductivity of an unsaturated medium. This phenomenon has been previously postulated in a number of independent theoretical and experimental investigations. In general, the previous studies identify layered heterogeneity as a primary cause of the macroscopic anisotropy. In addition, we show how hysteresis in the soil moisture characteristics (θ‐ψ relationship) can cause a lexturally homogeneous porous media profile to behave anisotropically under transient unsaturaied conditions. Recognizing that both of these factors (layered heterogeneity and capillary hysteresis) contribute the anisotropic behavior observed in the tracer experiments, we attempt to quantify the relative magnitude of their contributions in a numerical modeling investigation. For the numerical modeling study we use a finite element flow and transport code, and introduce a simple procedure for incorporating variable anisotropy into a predictive numerical model. To determine the relative magnitude of textural heterogeneity and capillary hysteresis as causes of the observed macroscopic anisotropy, we employ a diagnostic modeling approach. The results of the diagnostic modeling study indicate that textural heterogeneity is by far the most important contributor to the variable macroscopic anisotropy observed at the field site. The diagnostic simulations further show that the variable anisotropy approach is well suited to modeling field‐scale problems. Subsequently, a sensitivity analysis was performed to determine how climate, geologic and topographic structure, and media lithology affect flow and transport behavior when soils were specified to have a variable macroscopic anisotropy. The results of this study clearly indicate that variable state‐dependent anisotropy is a real and significant process at the field site and that modeling with consideration of variable anisotropy strongly affects model predictions.