z-logo
Premium
Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media
Author(s) -
Durlofsky Louis J.
Publication year - 1991
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/91wr00107
Subject(s) - permeability (electromagnetism) , grid , porous medium , boundary value problem , mechanics , mathematics , finite element method , porosity , geometry , mathematical analysis , geology , geotechnical engineering , physics , thermodynamics , chemistry , biochemistry , membrane
A numerical procedure for the determination of equivalent grid block permeability tensors for heterogeneous porous media is presented. The method entails solution of the fine scale pressure equation subject to periodic boundary conditions to yield, upon appropriate averaging of the fine scale velocity field, the coarse scale or equivalent grid block permeability. When the region over which this coarse scale permeability is computed constitutes a representative elementary volume (REV), the resulting equivalent permeability may be interpreted as the effective permeability of the region. Solution of the pressure equation on the fine scale is accomplished through the application of an accurate triangle‐based finite element numerical procedure, which allows for the modeling of geometrically complex features. The specification of periodic boundary conditions is shown to yield symmetric, positive definite equivalent permeability tensors in all cases. The method is verified through application to a periodic model problem and is then applied to the scale up of areal and cross sections with fractally generated permeability fields. The applicability and limitations of the method for these more general heterogeneity fields are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here