
Testing a Machine Learning Approach to Geophysical Inversion
Author(s) -
Morgan Rehnberg
Publication year - 2022
Publication title -
eos
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.316
H-Index - 86
eISSN - 2324-9250
pISSN - 0096-3941
DOI - 10.1029/2022eo220171
Subject(s) - inversion (geology) , geophysics , computer science , geology , artificial intelligence , machine learning , seismology , tectonics
Variational autoencoders can be leveraged to provide an effective method of inversion that is both accurate and computationally efficient.