z-logo
Premium
A Preliminary Study of Magnetosphere‐Ionosphere‐Thermosphere Coupling at Jupiter: Juno Multi‐Instrument Measurements and Modeling Tools
Author(s) -
Wang Yuxian,
Blanc Michel,
Louis Corentin,
Wang Chi,
André Nicolas,
Adriani Alberto,
Allegrini Frederic,
Blelly PierreLouis,
Bolton Scott,
Bonfond Bertrand,
Clark George,
Dinelli Bianca Maria,
Gérard JeanClaude,
Gladstone Randy,
Grodent Denis,
Kotsiaros Stavros,
Kurth William,
Lamy Laurent,
Louarn Philippe,
Marchaudon Aurélie,
Mauk Barry,
Mura Alessandro,
Tao Chihiro
Publication year - 2021
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1029/2021ja029469
Subject(s) - ionosphere , jovian , thermosphere , magnetosphere , physics , geophysics , atmosphere (unit) , jupiter (rocket family) , joule heating , atmospheric sciences , computational physics , plasma , planet , astronomy , meteorology , saturn , space shuttle , quantum mechanics
The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere‐Ionosphere‐Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi‐instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here