z-logo
Premium
Calibrating Electrostatic Deflection of Charged Particle Sensors Using Ambient Plasma Measurements
Author(s) -
Barrie Alexander C.,
Schiff Conrad,
Gershman Daniel J.,
Giles Barbara L.,
Rand David
Publication year - 2021
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1029/2021ja029149
Subject(s) - spacecraft , calibration , spectrometer , observational error , remote sensing , computer science , physics , optics , geology , mathematics , statistics , quantum mechanics , astronomy
As space‐based charged particle measurement pushes the technical envelope, resolution, both spatially and temporally, is ever improving. As such, the knowledge of the associated error must also improve. We present a method for correlating data collected from multiple sensors at different times in order to estimate the pointing error of each sensor. The method is demonstrated using flight data from the Dual Ion Spectrometer suite, part of the Fast Plasma Investigation on the NASA's Magnetospheric Multiscale mission. By looking at signals with sharp features in the direction of spacecraft spin, the relative error in look direction between sensors can be estimated with sub‐degree precision, roughly 20 times better than the native resolution in the azimuthal (spin) direction. These sharp features appear in nature often enough that a sufficiently large sample size can be identified, using an automated filter of routine science data, to calibrate the system, or post correct measured data. The relative pointing error can then be trended over time to monitor the evolution/aging of the measurement system. These data inform calibration/correction methods, should the error grow to a point where science quality is adversely affected.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here