z-logo
Premium
A Physical Interpretation of Recent Tropical Cyclone Post‐Landfall Decay
Author(s) -
Phillipson L. M.,
Toumi R.
Publication year - 2021
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2021gl094105
Subject(s) - tropical cyclone , landfall , environmental science , drag , meteorology , atmospheric sciences , vortex , wind speed , climatology , storm , physics , mechanics , geology
The decay of landfalling tropical cyclones is important to the damage caused. We examine a simple physically based decay model of maximum surface winds driven by frictional turbulent drag and a modification accounting for partial to complete land roughness. The model fits an algebraic decay with a parameter determined by the ratio of the surface drag coefficient to the effective vortex depth. This parameter has been decreasing from 1980 to 2018. There is also a global mean increase of wind speed 24 h after landfall of +1.13 m/s per decade. We cannot exclude the possibility that this trend is driven by the initial wind speed increase, but it is most likely due to a slowing of the decay. This weaker decay amounts to an additional 7 h of gale force winds for a typical Category 1 at landfall.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom