Premium
A Physical Interpretation of Recent Tropical Cyclone Post‐Landfall Decay
Author(s) -
Phillipson L. M.,
Toumi R.
Publication year - 2021
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2021gl094105
Subject(s) - tropical cyclone , landfall , environmental science , drag , meteorology , atmospheric sciences , vortex , wind speed , climatology , storm , physics , mechanics , geology
Abstract The decay of landfalling tropical cyclones is important to the damage caused. We examine a simple physically based decay model of maximum surface winds driven by frictional turbulent drag and a modification accounting for partial to complete land roughness. The model fits an algebraic decay with a parameter determined by the ratio of the surface drag coefficient to the effective vortex depth. This parameter has been decreasing from 1980 to 2018. There is also a global mean increase of wind speed 24 h after landfall of +1.13 m/s per decade. We cannot exclude the possibility that this trend is driven by the initial wind speed increase, but it is most likely due to a slowing of the decay. This weaker decay amounts to an additional 7 h of gale force winds for a typical Category 1 at landfall.