Premium
Contributions of Arctic Sea‐Ice Loss and East Siberian Atmospheric Blocking to 2020 Record‐Breaking Meiyu‐Baiu Rainfall
Author(s) -
Chen Xiaodan,
Dai Aiguo,
Wen Zhiping,
Song Yuanyuan
Publication year - 2021
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2021gl092748
Subject(s) - climatology , front (military) , east asia , arctic , environmental science , arctic ice pack , sea ice , spring (device) , geology , oceanography , china , geography , mechanical engineering , archaeology , engineering
Heavy Meiyu‐Baiu rainfall occurred over central‐east China and Japan in June–July 2020. This study analyzes observational and reanalysis data and performs atmospheric model simulations to investigate its causes. It is found that low Arctic sea ice cover (SIC) in late spring‐early summer of 2020 along the Siberian coast was an important factor. The low SIC caused local warming and high pressure, resulted in excessive atmospheric blockings over East Siberia, which caused cold air outbreaks into the Meiyu‐Baiu region, stopped the seasonal northward march of the Meiyu‐Baiu front, and increased the thermal contrast across the front, leading to record‐breaking rainfall in June–July 2020. Our results suggest that the 2020 extreme Meiyu‐Baiu was partly caused by the low SIC around the Siberian coast through its impact on East Siberian blockings. As sea ice along the Siberian coast decreases under global warming, its variations and thus influence on Meiyu‐Baiu rainfall may weaken.