Premium
Influence of Radiation on Evaporation Rates: A Numerical Analysis
Author(s) -
Heck K.,
Coltman E.,
Schneider J.,
Helmig R.
Publication year - 2020
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2020wr027332
Subject(s) - evaporation , environmental science , atmosphere (unit) , potential evaporation , radiation , lysimeter , atmospheric sciences , energy balance , materials science , soil science , soil water , meteorology , geology , thermodynamics , physics , optics
We present a fully coupled soil‐atmosphere model that includes radiation in the energy balance of the coupling conditions between the two domains. The model is able to describe evaporation processes under the influence of turbulence, surface roughness, and soil heterogeneities and focuses specifically on the influence of radiation on the mass and energy transport across the soil‐atmosphere interface. It is shown that evaporation rates are clearly dominated by the diurnal cycle of solar irradiance. During Stage‐I evaporation maximum temperatures are regulated due to evaporative cooling, but after a transition into Stage‐II evaporation, temperatures rise tremendously. We compare two different soil types, a coarser, sandy soil and a finer, silty soil, and analyze evaporation rates, surface temperatures, and net radiation for three different wind conditions. The influence of surface undulations on radiation and evaporation is analyzed and shows that radiation can lead to different local drying patterns in the hills and the valleys of the porous medium, depending on the height of the undulations and on the direction of the Sun. At last a comparison of lysimeter measurement data to the numerical examples shows a good match for measured and calculated radiation values but evaporation rates are still overestimated in the model. Possible reasons for the discrepancy between measurement and model data are analyzed and are found to be uncertainties about the parameters close to the interface, which are decisive for determining evaporation rates.