z-logo
Premium
Strike‐Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints From Puysegur Margin, New Zealand
Author(s) -
Shuck Brandon,
Van Avendonk Harm,
Gulick Sean P. S.,
Gurnis Michael,
Sutherland Rupert,
Stock Joann,
Patel Jiten,
Hightower Erin,
Saustrup Steffen,
Hess Thomas
Publication year - 2021
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/2020tc006436
Subject(s) - geology , subduction , lithosphere , seismology , seafloor spreading , rift , plate tectonics , oceanic crust , passive margin , tectonics , paleontology
Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre‐existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self‐sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike‐slip, and most recently to incipient subduction, all in the last ∼45 million years. Here we present deep‐penetrating multichannel reflection and ocean‐bottom seismometer tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene‐Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike‐slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ∼10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent‐collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike‐slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike‐slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here