z-logo
open-access-imgOpen Access
Application of a Multi‐Layer Artificial Neural Network in a 3‐D Global Electron Density Model Using the Long‐Term Observations of COSMIC, Fengyun‐3C, and Digisonde
Author(s) -
Li Wang,
Zhao Dongsheng,
He Changyong,
Shen Yi,
Hu Andong,
Zhang Kefei
Publication year - 2021
Publication title -
space weather
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 56
ISSN - 1542-7390
DOI - 10.1029/2020sw002605
Subject(s) - ionosphere , space weather , international reference ionosphere , cosmic cancer database , geomagnetic storm , gnss applications , tec , universal time , millstone hill , meteorology , satellite , earth's magnetic field , geology , environmental science , incoherent scatter , remote sensing , total electron content , geophysics , physics , astronomy , quantum mechanics , magnetic field
The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal‐vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space‐borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY‐3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three‐dimensional electron density model based on an artificial neural network, namely ANN‐TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root‐mean‐square error of the predicted residuals is 7.8 × 10 4 el/cm 3 . Under quiet space weather, the predicted accuracy of the ANN‐TDD is 30%–60% higher than the IRI‐2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN‐TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI‐2016 with the STORM option activated. Additionally, the ANN‐TDD successfully reproduces the large‐scale horizontal‐vertical ionospheric electrodynamic features, including seasonal variation and hemispheric asymmetries. These features agree well with the structure revealed by the RO profiles derived from the FORMOSAT/COSMIC‐2 mission. Furthermore, the ANN‐TDD successfully captures the prominent regional ionospheric patterns, including the equatorial ionization anomaly, Weddell Sea anomaly and mid‐latitude summer nighttime anomaly. The new model is expected to play an important role in the application of GNSS navigation and in the explanation of the physical mechanisms involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here