z-logo
open-access-imgOpen Access
The Badhwar‐O'Neill 2020 GCR Model
Author(s) -
Slaba T. C.,
Whitman K.
Publication year - 2020
Publication title -
space weather
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 56
ISSN - 1542-7390
DOI - 10.1029/2020sw002456
Subject(s) - cosmic ray , payload (computing) , physics , flux (metallurgy) , spectrometer , international space station , cosmic cancer database , nuclear physics , astrophysics , computational physics , astronomy , computer science , optics , computer network , materials science , network packet , metallurgy
The Badhwar‐O'Neill (BON) model has been used for some time to describe the galactic cosmic ray (GCR) environment encountered in deep space by astronauts and sensitive electronics. The most recent version of the model, BON2014, was calibrated to available measurements to reduce model errors for particles and energies of significance to astronaut exposure. Although subsequent studies showed the model to be reasonably accurate for such applications, modifications to the sunspot number (SSN) classification system and a large number of new high‐precision measurements suggested the need to develop an improved and more capable model. In this work, the BON2020 model is described. The new model relies on daily integral flux from the Advanced Composition Explorer Cosmic Ray Isotope Spectrometer (ACE/CRIS) to describe solar activity. For time periods not covered by ACE/CRIS, the updated international SSN database is used. Parameters in the new model are calibrated to available data, which include the new Alpha Magnetic Spectrometer (AMS‐02) and Payload for Antimatter Matter Exploration and Light‐nuclei Astrophysics (PAMELA) high‐precision measurements. It is found that the BON2020 model is a significant improvement over BON2014. Systematic bias associated with BON2014 has been removed. The average relative error of the BON2020 model compared to all available measurements is found to be <1%, and BON2020 is found to be within ±15% of a large fraction of the available measurements (26,269 of 27,646 → 95%).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here