Premium
Development of an Empirical Model for Estimating the Quiet Day Curve (QDC) Over the Brazilian Sector
Author(s) -
Chen S. S.,
Denardini C. M.,
Resende L. C. A.,
Chagas R. A. J.,
Moro J.,
Picanço G. A. S.
Publication year - 2020
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/2020rs007105
Subject(s) - magnetometer , earth's magnetic field , quiet , space weather , geology , geophysics , geodesy , magnetic field , meteorology , physics , quantum mechanics
Abstract The Embrace Magnetometer Network (Embrace MagNet) uses a series of magnetometers over South America to monitor the Earth's space environment and to study space weather. One of the common techniques used to study the effects of the magnetic disturbances in the globe is through the quiet day curve (QDC) of the geomagnetic field components. These types of QDC are calculated based on geomagnetic field data collected by magnetometers in the five quietest days for each month at each station. Thus, we developed and implemented an empirical model based on the QDC H component obtained by the Embrace MagNet. This model ought to be used as a prediction device when data are not available. The proposed algorithm is a function of the solar activity, the day of the year, and the universal time, which was adjusted based on 12 stations across to the South America sector between 2010 and 2018. Our results show that the values computed by this model are in good agreement with the observational data for the QDC. Finally, it is essential to mention that the QDC model presented in this study is the only available predicting tool of the Embrace MagNet stations to date, providing data with a high confidence level in the Brazilian sector.