z-logo
Premium
Retracted: Plio‐Pleistocene Indonesian Throughflow Variability Drove Eastern Indian Ocean Sea Surface Temperatures
Author(s) -
Smith Rebecca A.,
Castañeda Isla S.,
Groeneveld Jeroen,
De Vleeschouwer David,
Henderiks Jorijntje,
Christensen Beth A.,
Renema Willem,
Auer Gerald,
Bogus Kara,
Gallagher Stephen J.,
Fulthorpe Craig S.
Publication year - 2020
Publication title -
paleoceanography and paleoclimatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.927
H-Index - 127
eISSN - 2572-4525
pISSN - 2572-4517
DOI - 10.1029/2020pa003872
Subject(s) - throughflow , oceanography , geology , sea surface temperature , climatology , continental shelf , ocean current , barotropic fluid , soil science
Ocean gateways facilitate circulation between ocean basins, thereby impacting global climate. The Indonesian Gateway transports water from the Pacific to the Indian Ocean via the Indonesian Throughflow (ITF) and drives the strength and intensity of the modern Leeuwin Current, which carries warm equatorial waters along the western coast of Australia to higher latitudes. Therefore, ITF dynamics are a vital component of global thermohaline circulation. Plio‐Pleistocene changes in ITF behavior and Leeuwin Current intensity remain poorly constrained due to a lack of sedimentary records from regions under its influence. Here, organic geochemical proxies are used to reconstruct sea surface temperatures on the northwest Australian shelf at IODP Site U1463, downstream of the ITF outlet and under the influence of the Leeuwin Current. Our records, based on TEX 86 and the long‐chain diol index, provide insight into past ITF variability (3.5–1.5 Ma) and confirm that sea surface temperature exerted a control on Australian continental hydroclimate. A significant TEX 86 cooling of ~5°C occurs within the mid‐Pliocene Warm Period (3.3–3.1 Ma) suggesting that this interval was characterized by SST fluctuations at Site U1463. A major feature of both the TEX 86 and long‐chain diol index records is a strong cooling from ~1.7 to 1.5 Ma. We suggest that this event reflects a reduction in Leeuwin Current intensity due to a major step in ongoing ITF constriction, accompanied by a switch from South to North Pacific source waters entering the ITF inlet. Our new data suggest that an additional ITF constriction event may have occurred in the Pleistocene.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here