z-logo
open-access-imgOpen Access
Development of Coupled Data Assimilation With the BCC Climate System Model: Highlighting the Role of Sea‐Ice Assimilation for Global Analysis
Author(s) -
Liu X.,
Yao J.,
Wu T.,
Zhang S.,
Xu F.,
Zhang L.,
Jie W.,
Zhou W.,
Li Q.,
Liang X.,
Chu M.,
Yan J.,
Nie S.,
Cheng Y.
Publication year - 2021
Publication title -
journal of advances in modeling earth systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.03
H-Index - 58
ISSN - 1942-2466
DOI - 10.1029/2020ms002368
Subject(s) - sea ice , climatology , data assimilation , environmental science , atmosphere (unit) , sea ice concentration , sea surface temperature , ocean observations , arctic ice pack , cryosphere , climate model , sea ice thickness , geology , oceanography , climate change , meteorology , geography
The coupled data assimilation (CDA) system consisting of ocean, sea‐ice, and atmosphere data assimilation components with the Beijing Climate Center (BCC) Climate System Model has been developed to provide reliable analyses of the atmosphere, ocean, and sea‐ice states. It incorporates ocean temperature/salinity profiles, sea surface temperature, sea level height, and sea‐ice concentration observations at a daily frequency, and atmosphere reanalysis at a 6‐hourly frequency. Results show that the system is capable of realistically reproducing the climatology and variability of ocean, sea‐ice, and atmosphere. The performances in analyzing ocean component are comparable to those of well‐known ocean reanalyses that were once used to initialize the BCC model for climate predictions. A series of experiments with and without sea‐ice observations in the CDA framework are designed to explore the role of sea‐ice data assimilation (DA). The addition of sea‐ice DA exerts very small influence to the analysis of upper ocean temperature over the Arctic area, but leads to an evident reduction of temperature error in the upper 1000 m of ocean south of 60°S. Particularly, only the inclusion of sea‐ice DA can make the ocean/ocean‐atmosphere DA effective in providing skillful analysis in the high‐latitude Southern Ocean. Furthermore, we find that only on the basis of ocean DA, can the addition of sea‐ice concentration assimilation improve the analysis of tropical tropospheric atmosphere, along with a better analysis of mid‐ and high‐latitude stratospheric atmosphere. These results address the importance of coordination of sea‐ice observations and ocean observations in CDA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here