z-logo
Premium
Revealing the Importance of Capillary and Collisional Stresses on Soil Bed Erosion Induced by Debris Flows
Author(s) -
Song Pengjia,
Choi Clarence Edward
Publication year - 2021
Publication title -
journal of geophysical research: earth surface
Language(s) - English
Resource type - Journals
eISSN - 2169-9011
pISSN - 2169-9003
DOI - 10.1029/2020jf005930
Subject(s) - erosion , geotechnical engineering , geology , debris flow , debris , soil mechanics , environmental science , soil water , soil science , geomorphology , oceanography
Climate change is increasing the frequency of extreme rainfall events and the snow cover to melt at high altitudes, which may exacerbate the threat posed by debris flows. Soil bed erosion, the process by which the bed material fails under loadings from a debris flow, is perhaps the most important momentum exchange process that governs the destructive potential of debris flows. Existing erosion theories adopt saturated soil mechanics to describe the failure of soil bed and place a strong emphasis on the basal friction induced shear stress as the driving mechanism. However, soil beds in nature are rarely saturated and field observations have hinted at the importance of collisional stresses as a driving mechanism. In this study, an unsaturated soil mechanics framework is used to characterize soil bed erosion by collisional flows. Experiments were conducted to model the erosion of unsaturated sandy beds with a wide range of initial matric suction values, which is a measure of capillary stresses, by gravel flows. Contrary to the existing literature, the rate of erosion does not increase linearly but demonstrates a parabola‐like relationship with the bed water content because the shear strength of unsaturated soil is governed by capillary stresses. The importance of collisional stresses on soil bed erosion is demonstrated by a newly proposed dimensionless number. Findings indicate that existing erosion models largely underestimate channel bed erosion, especially for soil beds with low water content, and stress the importance of hydro‐mechanical coupling to advance the current state of debris flow hazard delineation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here