Premium
Formation of Tridymite and Evidence for a Hydrothermal History at Gale Crater, Mars
Author(s) -
Yen A. S.,
Morris R. V.,
Ming D. W.,
Schwenzer S. P.,
Sutter B.,
Vaniman D. T.,
Treiman A. H.,
Gellert R.,
Achilles C. N.,
Berger J. A.,
Blake D. F.,
Boyd N. I.,
Bristow T. F.,
Chipera S.,
Clark B. C.,
Craig P. I.,
Downs R. T.,
Franz H. B.,
Gabriel T.,
McAdam A. C.,
Morrison S. M.,
O’ConnellCooper C. D.,
Rampe E. B.,
Schmidt M. E.,
Thompson L. M.,
VanBommel S. J.
Publication year - 2021
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
eISSN - 2169-9100
pISSN - 2169-9097
DOI - 10.1029/2020je006569
Subject(s) - tridymite , impact crater , silicic , geology , geochemistry , mars exploration program , volcano , mineralogy , volcanic rock , astrobiology , sedimentology , hydrothermal circulation , cristobalite , paleontology , quartz , physics
In August 2015, the Curiosity Mars rover discovered tridymite, a high‐temperature silica polymorph, in Gale crater. The existing model for its occurrence suggests erosion and detrital sedimentation from silicic volcanic rocks in the crater rim or central peak. The chemistry and mineralogy of the tridymite‐bearing rocks, however, are not consistent with silicic volcanic material. Using data from Curiosity, including chemical composition from the Alpha Particle X‐ray Spectrometer, mineralogy from the CheMin instrument, and evolved gas and isotopic analyses from the Sample Analysis at Mars instrument, we show that the tridymite‐bearing rocks exhibit similar chemical patterns with silica‐rich alteration halos which crosscut the stratigraphy. We infer that the tridymite formed in‐place through hydrothermal processes and show additional chemical and mineralogical results from Gale crater consistent with hydrothermal activity occurring after sediment deposition and lithification.