Premium
Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection
Author(s) -
ReySanchez Camilo,
Wharton Sonia,
VilàGuerau de Arellano Jordi,
Paw U Kyaw Tha,
Hemes Kyle S.,
Fuentes Jose D.,
Osuna Jessica,
Szutu Daphne,
Ribeiro João Vinicius,
Verfaillie Joseph,
Baldocchi Dennis
Publication year - 2021
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2020jd033775
Subject(s) - environmental science , planetary boundary layer , advection , sensible heat , subsidence , eddy covariance , impervious surface , land cover , climatology , latent heat , atmospheric sciences , geology , meteorology , geography , land use , ecosystem , structural basin , ecology , physics , civil engineering , engineering , biology , turbulence , thermodynamics , paleontology
In this study, we evaluated the effect of land cover, atmospheric subsidence, and advection on the annual dynamics of atmospheric boundary layer (ABL) height from two contrasting sites. The first site is the Walker Branch forest, a deciduous forest of temperate climate, complex topography, and cloudy summers. The second site is the Sacramento‐San Joaquin River Delta, a site of Mediterranean climate, flat terrain on a local scale, and clear summers. After testing a new algorithm to calculate ABL heights from 915 MHz radar wind profilers, we evaluated a hierarchy of three slab models to recreate the diurnal and annual patterns of ABL growth. We found that the lower ABL heights in the Delta, particularly during late summer, are driven by the combined effects of increased atmospheric subsidence and marine air advection. In both sites, the annual pattern of ABL height was strongly correlated to total daily incoming radiation, and in the Delta, the annual pattern of ABL height closely followed the seasonal patterns of sensible heat flux from a mosaic of different land covers. A land composite of latent and sensible heat fluxes obtained through a meso‐network of eddy covariance measurements and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission resulted in higher model skill, thus showing that land cover heterogeneity is an important driver of ABL growth. Model simulations show that in the Delta, restoring agricultural land to wetlands with large open water areas could result in a reduction of ABL height during those months with low subsidence and advection.