Premium
Long‐Term Variability and Tendencies in Migrating Diurnal Tide From WACCM6 Simulations During 1850–2014
Author(s) -
Ramesh K.,
Smith Anne K.,
Garcia Rolando R.,
Marsh Daniel R.,
Sridharan S.,
Kishore Kumar K.
Publication year - 2020
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2020jd033644
Subject(s) - stratosphere , thermosphere , atmospheric sciences , mesosphere , climatology , equator , environmental science , amplitude , middle latitudes , zonal and meridional , latitude , geology , ionosphere , physics , geodesy , quantum mechanics , geophysics
Long‐term variability and tendencies in migrating diurnal tide (DW1) are investigated for the first time using a three‐member ensemble of historical simulations by NCAR's Whole Atmosphere Community Climate Model, latest Version 6 (WACCM6) for 1850–2014 (165 years). The model reproduces the climatological features of the tide in temperature ( T ), zonal wind ( U ), and meridional wind ( V ). The amplitudes peak in the upper mesosphere and lower thermosphere (above ~0.001 hPa) at the equator for T (~10 K) and over 20–30°N and S latitudes for U (~15 m/s) and V (~25 m/s). The contributions of solar cycle (SC), quasi biennial oscillation (QBO) at 10 and 30 hPa, El Niño–Southern Oscillation (ENSO), ozone depleting substances (ODS), carbon dioxide (CO 2 ), and stratospheric sulfate aerosols (volcanic eruptions) to change in annual mean amplitudes are analyzed using multiple linear regression. The tidal amplitudes in three components show a long‐term increase in the upper stratosphere (0.95–10.7 hPa) and the upper mesosphere (0.0001–0.01 hPa), predominantly due to increasing CO 2 with a smaller contribution from the trend in ENSO. Interestingly, the global mean tidal amplitude in T decreases sharply after 1950–1960 until 1995 and then increases in association with changes in ODSs. The seasonal differences in tidal responses to the above indices can be as large as the overall signals. All the responses are stronger in the upper mesosphere; however, there is also a pronounced negative response of temperature tide to ODSs over middle to high latitudes around the stratopause (~1 hPa) during all seasons.