z-logo
Premium
Long‐Term Variability and Tendencies in Middle Atmosphere Temperature and Zonal Wind From WACCM6 Simulations During 1850–2014
Author(s) -
Ramesh K.,
Smith Anne K.,
Garcia Rolando R.,
Marsh Daniel R.,
Sridharan S.,
Kishore Kumar K.
Publication year - 2020
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2020jd033579
Subject(s) - stratosphere , climatology , atmospheric sciences , atmosphere (unit) , environmental science , middle latitudes , volcano , sulfate aerosol , forcing (mathematics) , atlantic multidecadal oscillation , quasi biennial oscillation , atmospheric model , sea surface temperature , geology , meteorology , geography , seismology
Long‐term variability of middle atmosphere temperature (T) and zonal wind (U) is investigated using a three‐member ensemble of historical simulations of NCAR's Whole Atmospheric Community Climate Model latest version 6 (WACCM6) for 1850–2014 (165 years). The model reproduces the climatological features of T and U. The contributions of Quasi Biennial Oscillation (QBO) at 10 and 30 hPa, solar cycle (SC), El Niño‐Southern Oscillation (ENSO), ozone depleting substances (ODS), carbon dioxide (CO 2 ), and stratospheric sulfate aerosol (volcanic eruptions) to change in monthly zonal mean T and U are analyzed using multiple linear regression. The signal due to CO 2 increase dominates as a predictor of the net multidecadal global annual mean temperature change at all levels in the middle atmosphere. Contributions from ODS also affect the net multidecadal global mean temperature trend in the stratosphere. Because of similarities in the time evolution of the emissions of CO 2 and ODS, the analysis of existing model output cannot accurately separate the attributions of cooling to these two dominant forcing processes. On shorter time scales, solar flux variations are the largest source of variability in the mesosphere while volcanic eruptions are the largest in the stratosphere. In the stratosphere and mesosphere, both QBO and ENSO can significantly impact zonal mean temperature and zonal‐mean zonal wind depending on latitudes, but their impact on the multidecadal global mean temperature trend is very small.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here