Premium
ENSO Modulates Summer and Autumn Sea Ice Variability Around Dronning Maud Land, Antarctica
Author(s) -
Isaacs Florence E.,
Renwick James A.,
Mackintosh Andrew N.,
Dadic Ruzica
Publication year - 2021
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2020jd033140
Subject(s) - sea ice , geology , climatology , oceanography , antarctic sea ice , zonal and meridional , sea ice concentration , drift ice , arctic ice pack , sea surface temperature , el niño southern oscillation , cryosphere , sea ice thickness
Antarctica’s sea ice cover is an important component of the global climate system, yet the drivers of sea ice variability are not well understood. Here we investigated the effects of climate variability on sea ice concentration (SIC) around East Antarctica by correlating the 40‐years (1979–2018) satellite sea ice record and ERA5 reanalysis data. We found that summer and autumn SIC around Dronning Maud Land (DML) between 10 and 70°E exhibited a statistically significant negative correlation with the Niño 3.4 index. Sea ice in DML was also correlated with sea surface temperature (SST) anomalies in the tropical Pacific, and to an atmospheric wave train pattern extending from the South Pacific to DML. We suggest that a southward‐propagating atmospheric wave train triggered by SST anomalies in the tropical Pacific extends into DML and alters sea ice concentration by encouraging meridional airflow. Our results showed that shifts in meridional flow in DML affected sea ice thermodynamically, by altering local heat transport and in turn altering sea ice formation and melt.