z-logo
Premium
Influences of Physical and Biogeochemical Variability of the Central Red Sea During Winter
Author(s) -
Zarokanellos Nikolaos D.,
Jones Burton H.
Publication year - 2021
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2020jc016714
Subject(s) - oceanography , photic zone , mesoscale meteorology , biogeochemical cycle , stratification (seeds) , deep chlorophyll maximum , geology , mixed layer , phytoplankton , anticyclone , environmental science , atmospheric sciences , chemistry , seed dormancy , germination , botany , organic chemistry , dormancy , nutrient , environmental chemistry , biology
The Central Red Sea (CRS) has been characterized by significant eddy activity throughout the year. Weakened wintertime stratification contributes to enhanced vertical exchange. In winter 2014–2015, an extended glider time series in the CRS captured this variability. Surface cooling and stronger winds resulted in deepening of the mixed layer (ML) to nearly 90 m. The vertical distributions of density and oxygen suggest that the ML did not penetrate the nutricline. However, mixing events dispersed phytoplankton from the deep CHL maximum (DCM) throughout the ML, increasing near‐surface chlorophyll. Following the mixing events, a mesoscale cyclonic eddy (CE) grew and intensified, weakening stratification and decreasing the ML depth within the eddy. Where the CE interfaced with an adjacent anticyclonic eddy (AE), the CE DCM subducted beneath the shallower AE DCM leading to a local integrated chlorophyll maximum. Low salinity water containing relatively high chlorophyll and CDOM concentrations, originating from the Gulf of Aden, appeared in late winter. Mesoscale eddy activity resulted in a 160 m upward displacement of the nutricline to ∼60 m, well within the euphotic layer. Remote sensing imagery indicates that these eddies contribute to horizontal dispersion, including exchange between the open sea and coastal coral reefs. When the phytoplankton is distributed through the ML, clear diel variability was evident in the temporal CHL distribution. Because not all of the biogeochemical responses were apparent at the surface, sustained glider observations were essential to understand the temporal and spatial scales and their impact on these processes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here