z-logo
Premium
Sea‐Ice Melt Driven by Ice‐Ocean Stresses on the Mesoscale
Author(s) -
Gupta Mukund,
Marshall John,
Song Hajoon,
Campin JeanMichel,
Meneghello Gianluca
Publication year - 2020
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2020jc016404
Subject(s) - geology , sea ice , mesoscale meteorology , sea ice thickness , arctic ice pack , drift ice , fast ice , melt pond , antarctic sea ice , oceanography , downwelling , lead (geology) , climatology , upwelling , geomorphology
The seasonal ice zone around both the Arctic and the Antarctic coasts is typically characterized by warm and salty waters underlying a cold and fresh layer that insulates sea‐ice floating at the surface from vertical heat fluxes. Here, we explore how a mesoscale eddy field rubbing against ice at the surface can, through Ekman‐induced vertical motion, bring warm waters up to the surface and partially melt the ice. We dub this the “Eddy‐Ice‐Pumping” (EIP) mechanism. When sea‐ice is relatively motionless, underlying mesoscale eddies experience a surface drag that generates Ekman upwelling in anticyclones and downwelling in cyclones. An eddy composite analysis of a Southern Ocean eddying channel model, capturing the interaction of the mesoscale with sea‐ice, shows that within the compact ice zone, the mixed layer depth (MLD) is shallow in anticyclones (∼20 m) due to sea‐ice melt and deep in cyclones (∼50–200m) due to brine rejection. “EIP” warms the core of anticyclones without significantly affecting the temperature of cyclones, producing a net upward vertical heat flux that reduces the mean sea‐ice thickness by 10% and shoals the MLD by 60% over the course of winter and spring. In the following months, the sea‐ice thickness recovers with an overshoot, due to strong negative feedbacks associated with atmospheric cooling and salt stratification. Consequently, the effect of “EIP” does not accumulate over the years, but modulates the seasonal cycle of ice within the compact ice zone.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here