Premium
Near Trench 3D Seismic Attenuation Offshore Northern Hikurangi Subduction Margin, North Island, New Zealand
Author(s) -
Nakai Jenny S.,
Sheehan Anne F.,
Abercrombie Rachel E.,
EberhartPhillips Donna
Publication year - 2021
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1029/2020jb020810
Subject(s) - geology , seismology , subduction , trench , seismometer , submarine pipeline , attenuation , slip (aerodynamics) , tectonics , oceanography , chemistry , physics , organic chemistry , layer (electronics) , optics , thermodynamics
We image seismic attenuation near the Hikurangi trench offshore New Zealand, using ocean bottom and land‐based seismometers, revealing high attenuation above a recurring shallow slow‐slip event and within the subducting Hikurangi Plateau. The Hikurangi subduction margin east of the North Island, New Zealand is the site of frequent shallow slow slip events. Overpressured fluids are hypothesized to lead to slow slip at shallow depths close to the oceanic trench. Seismic attenuation, energy loss of seismic waves, can be used to detect high temperatures, melt, the presence of fluids, and fractures. We use local earthquake P‐ and S‐waves from 180 earthquakes to invert for t *, and subsequently invert for Qp and Qs, offshore the North Island directly above the area of slow slip. We image Qp and Qs to ∼25 km depth, increasing resolution of previously identified coastal low Q (100–300), and finding a new region of even higher attenuation (Qp and Qs < 50–100) directly above the shallow slow slip event of 2014–2015, beneath the offshore seismic array. This highest attenuation is downdip of a subducting seamount, and is spatially correlated with a high seismic reflectivity zone and Vp/Vs > 1.85, all of which provide evidence for the presence of fluids. The Qp and Qs is low at the trench (<50–100) and in the subducting plate (100–200), suggesting that seismic wave scattering due to faults, fractures, and the inherent heterogeneous composition of the Hikurangi Plateau, a large igneous province, plays a role in seismic attenuation.