z-logo
Premium
Thermal Pressure in the Laser‐Heated Diamond Anvil Cell: A Quantitative Study and Implications for the Density Versus Mineralogy Correlation of the Mantle
Author(s) -
Yen Connor Ethan,
Williams Quentin,
Kunz Martin
Publication year - 2020
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1029/2020jb020006
Subject(s) - diamond anvil cell , thermal , mantle (geology) , equation of state , thermodynamics , diamond , mineralogy , chemistry , materials science , high pressure , geology , geophysics , physics , composite material
Abstract Thermal pressure is an inevitable thermodynamic consequence of heating a volumetrically constrained sample in the diamond anvil cell. Its possible influences on experimentally determined density‐mineralogy correlations are widely appreciated, yet the effect itself has never been experimentally measured. We present here the first quantitative measurements of the spatial distribution of thermal pressure in a laser‐heated diamond anvil cell (LHDAC) in both olivine and AgI. The observed thermal pressure is strongly localized and closely follows the distribution of the laser hotspot. The magnitude of the thermal pressure is of the order of the thermodynamic thermal pressure ( αK T Δ T ) with gradients between 0.5 and 1.0 GPa/10 μm. Remarkably, we measure a steep gradient in thermal pressure even in a sample that is heated close to its melting line. This generates consequences for pressure determinations in pressure‐volume‐temperature (PVT) equation of state measurements when using an LHDAC. We show that an incomplete account of thermal pressure in PVT experiments can lead to biases in the coveted depth versus mineralogy correlation. However, the ability to spatially resolve thermal pressure in an LHDAC opens avenues to measure difficult‐to‐constrain thermodynamic derivative properties, which are important for comprehensive thermodynamic descriptions of the interior of planets.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here