Premium
Tropical Water Fluxes Dominated by Deep Convection Up to Near Tropopause Levels
Author(s) -
Bolot Maximilien,
Fueglistaler Stephan
Publication year - 2021
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2020gl091471
Subject(s) - tropopause , atmospheric sciences , stratosphere , environmental science , climatology , convection , water vapor , deep convection , storm , troposphere , geology , meteorology , geography , oceanography
In the tropics, the tropopause is exceptionally cold and air entering the stratosphere is dehydrated down to a few parts per million leading to the extreme dryness of Earth’s stratosphere. Deep convection typically detrains a few kilometers below the tropopause, but the few storms that may reach up to the tropopause could have an outsize effect on water vapor, other chemically important trace species, and clouds. However, little progress has been made to quantify the role of these storms due to challenging conditions for observations, and computational limitations. Here we provide the first global observational estimate of the convective ice flux at near tropical tropopause levels by using spaceborne lidar measurements and pioneering a method to convert from lidar measurement to ice flux information. Our estimate indicates that the upward ice flux in deep convection dominates moisture transport almost all the way up to the cold point tropopause.