Premium
A High Resolution, Three‐Dimensional View of the D‐28 Calving Event From Amery Ice Shelf With ICESat‐2 and Satellite Imagery
Author(s) -
Walker Catherine C.,
Becker Maya K.,
Fricker Helen A.
Publication year - 2021
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2020gl091200
Subject(s) - ice calving , geology , ice shelf , rift , front (military) , satellite , geodesy , remote sensing , geomorphology , sea ice , oceanography , seismology , cryosphere , tectonics , biology , pregnancy , genetics , lactation , aerospace engineering , engineering
Tabular calving events occur from Antarctica's large ice shelves only every few decades, and are preceded by rift propagation. We used high‐resolution imagery and ICESat‐2 data to determine the propagation rates for the three active rifts on Amery Ice Shelf (AIS; T1, T2, and E3) and observe the calving of D‐28 on September 25, 2019 along T1. AIS front advance accelerated downstream of T1 in the years before calving, possibly increasing stress at the rift tip. T1 experienced significant acceleration for 12 days before calving, coinciding with a jump in propagation of E3. ICESat‐2's high resolution and repeat acquisitions every 91 days allowed for analysis of the ice front before and after calving, and rift detection where it was not visible in imagery as a ∼1 m surface depression, suggesting that it propagates as a basal fracture. Our results show that ICESat‐2 can provide process‐scale information about iceberg calving.