z-logo
open-access-imgOpen Access
Fallout of Lead Over Paris From the 2019 Notre‐Dame Cathedral Fire
Author(s) -
Geen Alexander,
Yao Yuling,
Ellis Tyler,
Gelman Andrew
Publication year - 2020
Publication title -
geohealth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.889
H-Index - 12
ISSN - 2471-1403
DOI - 10.1029/2020gh000279
Subject(s) - environmental science , deposition (geology) , population , hydrology (agriculture) , archaeology , geography , geology , geomorphology , geotechnical engineering , demography , sediment , sociology
The roof and spire of Notre‐Dame cathedral in Paris that caught fire and collapsed on 15 April 2019 were covered with 460 t of lead (Pb). Government reports documented Pb deposition immediately downwind of the cathedral and a twentyfold increase in airborne Pb concentrations at a distance of 50 km in the aftermath. For this study, we collected 100 samples of surface soil from tree pits, parks, and other sites in all directions within 1 km of the cathedral. Concentrations of Pb measured by X‐ray fluorescence range from 30 to 9,000 mg/kg across the area, with a higher proportion of elevated concentrations to the northwest of the cathedral, in the direction of the wind prevailing during the fire. By integrating these observations with a Gaussian process regression model, we estimate that the average concentration of Pb in surface soil downwind of the cathedral is 430 (95% interval, 300–590) mg/kg, nearly double the average Pb concentration in the other directions of 240 (95% interval, 170–320) mg/kg. The difference corresponds to an integrated excess Pb inventory within a 1 km radius of 1.0 (95% interval, 0.5–1.5) t, about 0.2% of all the Pb covering the roof and spire. This is over 6 times the estimated amount of Pb deposited downwind 1–50 km from the cathedral. To what extent the concentrated fallout within 1 km documented here temporarily exposed the downwind population to Pb is difficult to confirm independently because too few soil, dust, and blood samples were collected immediately after the fire.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here