Open Access
Isotopic Fingerprints of Ice‐Rafted Debris Offer New Constraints on Middle to Late Quaternary Arctic Circulation and Glacial History
Author(s) -
Dong Linsen,
Polyak Leonid,
Liu Yanguang,
Shi Xuefa,
Zhang Jun,
Huang Yuanhui
Publication year - 2020
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2020gc009019
Subject(s) - geology , glacial period , oceanography , ice sheet , interglacial , sea ice , quaternary , arctic , provenance , paleontology
Abstract For the first time, ice‐rafted debris provenance related to the Quaternary glacial discharge and circulation was constrained using radiogenic Sr, Nd, and Pb isotopes from a sedimentary record (Core BN05) from the central Arctic Ocean. The record is composed of glacial/interglacial intervals estimated to span ~0.5 Ma (Marine Isotope Stages [MIS] 1–14). Nd versus Sr isotope data show two end member groups, further elaborated using Pb isotopes. Glacial data mostly point at North American sources with unradiogenic εNd and high 87 Sr/ 86 Sr values, including detrital carbonate (dolomite) layers originating from Paleozoic rocks eroded by the Laurentide Ice Sheet. The opposite end member group including estimated MIS6 and MIS4 samples indicates the Siberian Large Igneous Province eroded by the Eurasian Ice Sheet as the major source, possibly with additional inputs from the East Siberian Ice Sheet. The limited evidence for Siberian Ice Sheet provenance may result from the predominant distribution of this glaciation on the continental shelf providing weak, fine‐grained sediments. Glacial‐time western Arctic circulation inferred from isotopic data is mostly similar to the modern Beaufort Gyre but was more streamlined toward the Fram Strait during some glacial events. Interglacial/major interstadial, presumably sea ice transported sediments, shows a mixture of North American and Siberian sources, consistent with historically observed variations in the Transpolar Drift versus Beaufort Gyre circulation. Isotope pattern in major interglacials (e.g., MIS5e, MIS11, and MIS 13) resembles the recent trend of increased sediment ice transport from the East Siberian/Chukchi Sea, possibly in relation to the ongoing Arctic warming.