Premium
Atmospheric Dust Inputs, Iron Cycling, and Biogeochemical Connections in the South Pacific Ocean From Thorium Isotopes
Author(s) -
Pavia Frank J.,
Anderson Robert F.,
Winckler Gisela,
Fleisher Martin Q.
Publication year - 2020
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/2020gb006562
Subject(s) - biogeochemical cycle , geotraces , environmental science , ocean gyre , iron fertilization , mineral dust , deposition (geology) , oceanography , flux (metallurgy) , atmospheric sciences , seawater , particulates , aerosol , geology , environmental chemistry , phytoplankton , chemistry , meteorology , physics , subtropics , ecology , nutrient , paleontology , organic chemistry , sediment , biology
One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust. Geographic patterns in biogeochemical processes such as primary production and nitrogen fixation that require micronutrients like iron (Fe) are modulated in part by the spatial distribution of dust supply. Global models of dust deposition rates are poorly calibrated in the open ocean, owing to the difficulty of determining dust fluxes in sparsely sampled regions. We present new estimates of dust and Fe input rates from measurements of dissolved and particulate thorium isotopes 230 Th and 232 Th on the FS Sonne SO245 section (GEOTRACES process study GPpr09) in the South Pacific. We first discuss high‐resolution upper water column profiles of Th isotopes and the implications for the systematics of dust flux reconstructions from seawater Th measurements. We find dust fluxes in the center of the highly oligotrophic South Pacific Gyre that are the lowest of any mean annual dust input rates measured in the global oceans, but that are 1–2 orders of magnitude higher than those estimated by global dust models. We also determine dust‐borne Fe fluxes and reassess the importance of individual Fe sources to the surface South Pacific Gyre, finding that dust dissolution, not vertical or lateral diffusion, is the primary Fe source. Finally, we combine our estimates of Fe flux in dust with previously published cellular and enzymatic quotas to determine theoretical upper limits on annual average nitrogen fixation rates for a given Fe deposition rate.