Open Access
A Sampling‐Based Path Planning Algorithm for Improving Observations in Tropical Cyclones
Author(s) -
Darko Justice,
Folsom Larkin,
Park Hyoshin,
Minamide Masashi,
Ono Masahiro,
Su Hui
Publication year - 2022
Publication title -
earth and space science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.843
H-Index - 23
ISSN - 2333-5084
DOI - 10.1029/2020ea001498
Subject(s) - tropical cyclone , data assimilation , environmental science , meteorology , storm , initialization , tropical cyclone scales , computer science , eye , robustness (evolution) , algorithm , cyclone (programming language) , geography , biochemistry , chemistry , field programmable gate array , computer hardware , gene , programming language
Abstract Lack of high‐resolution observations in the inner‐core of tropical cyclones remains a key issue when constructing an accurate initial state of the storm structure. The major implication of an improper initial state is the poor predictability of the future state of the storm. The size and associated hazard from strong winds at the inner‐core make it impossible to sample this region entirely. However, targeting regions of the inner‐core where forecasted atmospheric measurements have high uncertainty can significantly improve the accuracy of measurements for the initial state of the storm. This study provides a scheme for targeted high‐resolution observations for small Unmanned Aircraft Systems (sUAS) platforms (e.g., Coyote sUAS) to improve the estimates of the atmospheric measurement in the inner‐core structure. The benefit of observation is calculated based on the high‐fidelity state‐of‐the‐art hurricane ensemble data assimilation system. Potential locations with the most informative measurements are identified through exploration of various simulation‐based solutions depending on the state variables (e.g., pressure, temperature, wind speed, relative humidity) and a combined representation of those variables. A sampling‐based sUAS path planning algorithm considers energy usage when locating the regions of highly uncertain prediction of measurements, allowing sUAS to maximize the benefit of observation. Robustness analysis of our algorithm for multiple scenarios of sUAS drop and goal locations shows satisfactory performance against benchmark similar to current NOAA field campaign. With optimized sUAS observations, a data assimilation analysis shows significant improvements of up to 4% in the tropical cyclone structure estimates after resolving uncertainties at targeted locations.