z-logo
Premium
Geologic Controls on Source Water Drive Baseflow Generation and Carbon Geochemistry: Evidence of Nonstationary Baseflow Sources Across Multiple Subwatersheds
Author(s) -
Richardson C. M.,
Zimmer M. A.,
Fackrell J. K.,
Paytan A.
Publication year - 2020
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2019wr026577
Subject(s) - baseflow , groundwater , hydrology (agriculture) , dissolved organic carbon , streamflow , subsurface flow , geology , aquifer , environmental science , drainage basin , oceanography , cartography , geotechnical engineering , geography
Abstract The contributions and composition of baseflow sources across an extended recession period were quantified for six subwatersheds of varying size in a structurally complex watershed in coastal California using endmember mixing analysis and related to catchment characteristics (e.g., topography, geology, land use, and soil characteristics). Both shallow subsurface and deep groundwater reservoirs were important contributors for streamflow during low flow periods, and the composition of baseflow sources across subwatersheds was directly related to geologic indices. A binary classification of underlying bedrock permeability (e.g., low vs. high) best explained the changes in shallow subsurface water and deeper groundwater inputs through the seasonal recession. Dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and specific UV absorbance at 254 nm (SUVA 254 ) were used to provide additional insight into endmember characteristics and their contributions to baseflow. Stream water DIC concentrations were broadly controlled by mixing of groundwater and shallow subsurface water endmembers with relatively constant DIC concentrations, while stream water DOC concentrations reflected both spatial and temporal changes in shallow subsurface water DOC. Results from this study show (1) the importance of considering baseflow as a dynamic mixture of water from multiple sources, (2) the effect of geology on source composition at the subwatershed scale during low flow conditions, and (3) the impact of shifting baseflow sources on stream water dissolved carbon concentrations and the utility of using dissolved carbon concentrations to obtain additional insight into temporal variability in baseflow sources.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here